

Safety Data Sheet

Revision: C Date of Issue: 30.10.2024

1. IDENTIFICATION OF THE MATERIAL AND SUPPLIER

Product Name: Sodium Thiosulphate Pentahydrate

Other name(s): Ametox, Antichlor, Hypo, Na2-S2-O3.5H2O, Sodothiol, Sulfothiorine, sodium hyposulfite, sodium hyposulfite, sodium oxide sulfide pentahydrate, sodium oxide sulphide pentahydrate, sodium thiosulfate, sodium thiosulfate pentahydrate, sodium thiosulfate pentahydrate, thiosulfuric acid disodium salt pentahydrate, thiosulphuric acid disodium salt pentahydrate

Proper shipping name

ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains sodium thiosulfate pentahydrate)

Chemical formula O3S2·2Na·5H2O|H2O3 S2.2Na

Other means of identificationNot AvailableCAS number10102-17-7

Relevant identified uses

Used as photographic fixing agent; in chrome tanning; removing chlorine in bleaching and papermaking; extraction of silver from its ores; dichlorination of water; mordant in dyeing and printing textiles. Also used as reagent in analytical and organic chemistry; reducing agent in chrome dyeing; sequestrant in salt (up to 0.1%); antidote for cyanide poisoning; in leather manufacture; bleaching of bone, straw and ivory.

Supplier: Chemical Industries (Far East) Limited

(Head office) 3, Jalan Samulun, Jurong Town, Singapore 629127

Tel: 6265 0411 Fax: 6265 6690 Email: chemical.ind@cil.com.sg

Emergency telephone number 6265 0411 (Head Office)

2. HAZARDS IDENTIFICATION

Classification of the substance or mixture

Classification [1] Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Specific

target organ toxicity - single exposure Category 3 (respiratory tract

irritation), Acute Aquatic Hazard Category 1

Legend: 1. Classification drawn from ICOP; 2. Classification drawn from EC

Directive 1272/2008 - Annex VI

Label Elements GHS label elements

Signal word: WARNING

Hazard statement(s)

H315 Causes skin irritation.

H319 Causes serious eye irritation.

H335 May cause respiratory irritation.

H400 Very toxic to aquatic life.

Precautionary statement(s) Prevention

P271 Use only outdoors or in a well-ventilated area.

P261 Avoid breathing dust/fume/gas/mist/vapours/spray.

P273 Avoid release to the environment.

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

P362 Take off contaminated clothing and wash before reuse.

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P312 Call a POISON CENTER or doctor/physician if you feel unwell.

P337+P313 If eye irritation persists: Get medical advice/attention.

P391 Collect spillage.

P302+P352 IF ON SKIN: Wash with plenty of soap and water.

P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

P332+P313 If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

P405 Store locked up.

P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Substances			
CAS No	%[weight]	Name	Classification
10102-17-7	100	sodium thiosulfate Pentahydrate	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Specific target organ toxicity - single exposure
			Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 1; H315, H319, H335, H400 [1]

Legend: 1. Classification drawn from ICOP; 2. Classification drawn from EC Directive 1272/2008 - Annex VI 3. Classification drawn from C&L

Mixtures

See section above for composition of Substances

4. FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation. Inhalation

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

5. FIRE FIGHTING MEASURES

Extinguishing media

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire None know.

Incompatibility

Advice for firefighters

Fire Fighting Alert Fire Brigade and tell them location and nature of hazard.

Wear breathing apparatus plus protective gloves in the event of a fire.

Prevent, by any means available, spillage from entering drains or water courses. Use firefighting

procedures suitable for surrounding area.

DO NOT approach containers suspected to be hot.

Cool fire exposed containers with water spray from a protected location. If safe to do so, remove

containers from path of fire.

Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard Non-combustible.

Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of: sulfur oxides (SOx), hydrogen sulfide

(H2S), metal oxides.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills Remove all ignition sources.

Clean up all spills immediately. Avoid contact with skin and eyes.

Control personal contact with the substance, by using protective equipment.

Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal.

Environmental hazard - contain spillage.

Major Spills Environmental hazard - contain spillage. Moderate hazard.

CAUTION: Advise personnel in area.

Alert Emergency Services and tell them location and nature of hazard. Control

personal contact by wearing protective clothing.

Prevent, by any means available, spillage from entering drains or water courses.

Recover product wherever possible.

IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. **IF WET:** Vacuum/shovel up and place in labelled containers for disposal. **ALWAYS:** Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency

Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

7. HANDLING AND STORAGE

Precautions for safe handling

Safe handling

Avoid all personal contact, including inhalation.

Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area.

Prevent concentration in hollows and sumps.

DO NOT enter confined spaces until atmosphere has been checked. **DO NOT** allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials.

When handling, DO NOT eat, drink or smoke.

Keep containers securely sealed when not in use. Avoid physical damage to containers.

Always wash hands with soap and water after handling.

Work clothes should be laundered separately. Launder contaminated clothing before re-use.

Use good occupational work practice.

Observe manufacturer's storage and handling recommendations contained within this SDS.

Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Store in original containers.

Keep containers securely sealed.

Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks.

Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).

Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container Glass container is suitable for laboratory quantities

Polyethylene or polypropylene container.

Check all containers are clearly labelled and free from leaks.

Storage incompatibility For inorganic thiosulfates

Avoid storage with acids, metal nitrites, sodium nitrite, halogens and oxidizing agents. Forms explosive product with potassium nitrate, sodium

nitrate.

Reacts with acids, forming sulfur dioxide.

Incompatible with halogens, lead, silver and mercury salts. iodine. Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce

ignition.

The state of subdivision may affect the results.

Sulfides are incompatible with acids, diazo and azo compounds,

halocarbons, isocyanates, aldehydes, alkali metals, nitrides, hydrides, and

other strong reducing agents.

Many reactions of sulfides with these materials generate heat and in many

cases hydrogen gas.

Many sulfide compounds may liberate hydrogen sulfide upon reaction

with an acid.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
sodium thiosulfate	Sodium thiosulfate pentahydrate	0.85 mg/m3	9.4 mg/m3	1200 mg/m3
pentahydrate				
sodium thiosulfate pentahydrate	Sodium thiosulfate	3 mg/m3	33 mg/m3	1100 mg/m3

Ingredient	Original IDLH	Revised IDLH
sodium thiosulfate	Not Available	Not Available
pentahydrate		

MATERIAL DATA

It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However, this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

- OSHA (USA) concluded that exposure to sensory irritants can:
 - -cause inflammation
 - -cause increased susceptibility to other irritants and infectious agents
 - -lead to permanent injury or dysfunction
 - -permit greater absorption of hazardous substances and
 - -acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self-contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Exposure controls

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in	0.25-0.5 m/s
still air).	(50-100 f/min.)
aerosols, fumes from pouring operations, intermittent	0.5-1 m/s
container filling, low speed conveyer transfers, welding,	(100-200 f/min.)
spray drift, plating acid fumes, pickling (released at low	
velocity into zone of active generation)	
direct spray, spray painting in shallow booths, drum filling,	1-2.5 m/s
conveyer loading, crusher dusts, gas discharge (active	(200-500 f/min.)
generation into zone of rapid air motion)	
grinding, abrasive blasting, tumbling, high speed wheel	2.5-10 m/s
generated dusts (released at high initial velocity into zone	(500-2000 f/min.)
of very high rapid air motion).	

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to	1: Disturbing room air currents
capture	
2: Contaminants of low toxicity or of	2: Contaminants of high toxicity
nuisance value only.	
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases).

Therefore, the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal Protection

Safety glasses with side shields. Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below.

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- > chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- > Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocaoutchouc.
- > polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection See Other protection below

Other protection > Overalls.

P.V.C. apron. Barrier cream.

Skin cleansing cream.

Eye wash unit.

Thermal hazards Not Available

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent)

Required Minimum	Half-Face Respirator	Full-Face	Powered Air
Protection Factor		Respirator	Respirator
up to 10 x ES	P1	-	PAPR-P1
	Air-line*	-	-
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
Air-line*		-	
100+ x ES	-	Air-line**	PAPR-P3

 $[\]mbox{*}$ - Negative pressure demand $\mbox{**}$ - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance Odourless, white, translucent crystals or powder. Cooling taste and bitter

aftertaste. Soluble in water and oil of turpentine. Insoluble in alcohol.

Deliquescent in moist air, efflorescent above 33 deg. C in dry air.

Commercial product commonly pentahydrate, the 5H2O being lost above 100

deg.C. Decomposes to produce hydrogen sulfide.

Physical state	Divided Solid	Relative density	1.75
•		(Water = 1)	
Odour	Not Available	Partition coefficient	Not Available
		n-octanol / water	
Odour threshold	Not Available	Auto-ignition	Not Applicable
		temperature (°C)	
pH (as supplied)	Not Applicable	Decomposition	> 100
		temperature	
Melting point / freezing	48 (loses 5H2O)	Viscosity (cSt)	Not Available
point (°C)			
Initial boiling point and	> 100 (decompose	Molecular weight	248.17
boiling range (°C)		(g/mol)	
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive	Not Applicable	Surface Tension	Not Applicable
Limit (%)		(dyn/cm or mN/m)	
Lower Explosive	Not Applicable	Volatile Component	Negligible
Limit (%)		(%vol)	
Vapour pressure	Not Applicable	Gas group	Not Available
(kPa)			
Solubility in water	Miscible	pH as a solution	6.5-8.0 (5% sol)
(g/L)		(1%)	
Vapour density	Not Applicable	VOC g/L	Not Available
(Air = 1)			

10. STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Unstable in the presence of
	incompatible materials. Product is considered stable.
	Hazardous polymerisation will not
	occur.
Possibility of hazardous reactions	See section 7
Conditions to	See section 7
avoid	
Incompatible materials	See section 7
Hazardous decomposition	See section 5
products	

11. TOXICOLOGICAL INFORMATION

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Symptoms of hydrogen sulfide (H2S) exposure may include profuse salivation, nausea, vomiting, diarrhoea, giddiness, headache, vertigo, amnesia, palpitations, arrhythmia, weakness, muscle cramps, confusion, sudden collapse, unconsciousness and death due to respiratory paralysis (above 300 ppm). Inhalation of (H2S) at low concentrations causes headache, dizziness and upset stomach. Higher concentrations cause olfactory fatigue, irritation to the respiratory tract, excitement, confusion, and exposure for a prolonged period may cause bronchitis and pulmonary oedema.

Although hydrogen sulfide is extremely odourous, the "rotten egg" odour is not a reliable indicator for warning of exposure since odour fatigue readily occurs. Odour sensation is lost immediately at concentrations exceeding 200 ppm. Case reports suggest that toxic amounts can enter the body through a punctured ear drum, even while wearing some sorts of respiratory protection.

Hydrogen sulfide is primarily a respiratory toxin which inhibits the cytochrome-oxidase system and is probably more potent than hydrogen cyanide. The lifetime of hydrogen sulfide in oxygenated blood is short and sulfmethaemoglobin is rapidly detoxified by red blood cells and the liver. Most fatalities due to hydrogen sulfide intoxication occur at the scene of exposure and immediate supportive care is imperative. Ensure such contingencies are addressed as part of the site emergency plan and that operators or other employees who may become accidentally exposed, are made aware of the existence of such a plan.

Inhaled

Ingestion

Skin Contact

Thiosulfate salts are poorly absorbed from the alimentary tract and as a consequence act as an osmotic cathartic. Absorbed thiosulfates are remarkably inert and are distributed in extracellular fluids where they may cause osmotic disturbances.

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Exposure to H2S may produce pain, blurred vision, and irritation. These symptoms are temporary in all but severe cases. Eye irritation may produce conjunctivitis, photophobia, pain, and at higher concentrations blurred vision and corneal blistering

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

Chronic low level exposures to hydrogen sulfide may produce headache, fatigue, dizziness, irritability and loss of libido. These symptoms may also result from

Eye

Chronic

damage produced by isolated or repeated unmeasured peak high level exposures in healthy persons or those suffering from pre-existing neurological diseases. A study on long term effects showed that H2S apparently can cause continuing, sometimes unrecognised olfactory deficits. [Hirsch, A.R. - Occ. Env. Med.,1999, Vol 5, Iss 4, pp 284-287]

sodium thiosulfate	<u>TOXICITY</u>	<u>IRRITATION</u>
pentahydrate	Dermal (rabbit) LD50: >2000 mg/kg[1]	Nil reported
- •	Oral (rat) LD50: >2000 mg/kg[1]	-

Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

12. ECOLOGICAL INFORMATION

Toxicity					
Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
sodium thiosulfate pentahydrate	LC50	96	Fish	16.88742mg/L	3
sodium thiosulfate pentahydrate	EC50	24	Crustacea	360mg/L	2
sodium thiosulfate pentahydrate	EC50	48	Crustacea	230mg/L	2
sodium thiosulfate pentahydrate	NOEC	504	Crustacea	>10mg/L	2
sodium thiosulfate pentahydrate	EC50	72	Algae or other aquatic plants	>100mg/L	2

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Very toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high-water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites. for thiosulfates: In water absent of oxygen, thiosulfate is fairly stable, with half-lives greater than 600 days at 20 C and 60 days at 35 C. Oxygen promoted decomposition of thiosulfate. In open systems under shaking, the half-life of thiosulfate

at $20~\mathrm{C}$ decreased to $55~\mathrm{days}$. In soil, thiosulfate decomposes rapidly, with half-lives less than $24~\mathrm{hours}$. Medium acidity does not influence thiosulfate decomposition rate.

Degradation products of thiosulfate are mainly tetrathionate and sulfate. No sulfite was detected.

Sulfide ion is very toxic to aquatic life, threshold concentration for fresh or saltwater fish is 0.5ppm. The product therefore is very toxic to aquatic life. The major decomposition product, hydrogen sulfide, is damaging to vegetation at 5ppm for 24 hours

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
sodium thiosulfate	HIGH	HIGH	_
pentahydrate			

Bioaccumulative potential

Ingredient	Bioaccumulation
sodium thiosulfate pentahydrate	LOW (LogKOW = -1.529)

Mobility in soil

Ingredient	Mobility
sodium thiosulfate	LOW (KOC = 6.124)
pentahydrate	

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- > Reduction
- Reuse
- Recycling
- > Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- > **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- ➤ It may be necessary to collect all wash water for treatment before disposal.
- > In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

For small quantities:

- ➤ Neutralise an aqueous solution of the material.
- > Filter solids for disposal to approved land fill.
- Flush solution to sewer (subject to local regulation)
- ➤ Heat and fumes evolved during reaction may be controlled by rate of addition.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- > Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

14. TRANSPORT INFORMATION

Labels Required

Marine Pollutant NO

HAZCHEM Not Applicable

Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

15. REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

No data available

SODIUM THIOSULFATE PENTAHYDRATE(10102-17-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

National Inventory	Status
Australia - AICS	Y
Canada - DSL	Y
Canada - NDSL	N (sodium thiosulfate pentahydrate)
China - IECSC	Y
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	Y
Korea - KECI	Y
New Zealand - NZIoC	Y
Philippines - PICCS	Y
USA - TSCA	Y
Legend:	Y = All ingredients are on the inventory
	N = Not determined or one or more ingredients are not on
	the inventory and are not exempt from listing(see specific
	ingredients in brackets)

16. OTHER INFORMATION

This safety data sheet has been prepared by Chemical Industries (Far East) Limited.

This SDS summarises to our best knowledge at the date of issue, the chemical health and safety hazards of the material and general guidance on how to safely handle the material in the workplace. Since Chemical Industries (Far East) Limited cannot anticipate or control the conditions under which the product may be used, each user must, prior to usage, assess and control the risks arising from its use of the material.

If clarification or further information is needed, the user should contact Chemical Industries (Far East) Limited at the contact details on page 1.

Chemical Industries (Far East) Limited responsibility for the material as sold is subject to the terms and conditions of sale, a copy of which is available upon request.